
Source of Acquisition
NASA Ames Research Center

LiveInventor: An interactive development environment
for robot autonomy

Charles Neveu, QSS Group, Inc
neveu@ artemis.arc.nasa. gov

Mark Shirley, NASA Ames Research Center
Shirley @ptolemv.arc.nasa.,oov

NASA Ames Research Center
Moffett Field, CA 94035-1000 USA

MS 269-3

Keywords robotics, autonomy, physically-
based simulation

Address correspondence to:
Chvles Neveu, MS-269 NASA Ames Research

Center, Moffett Field, CA, 94035-1000 USA
Phone: 650-604-2525 FAX: 650-604-4036

Introduction
LiveInventor is an interactive development
environment for robot autonomy developed at
NASA Ames Research Center. It extends the
industry-standard Opednventor graphics library
and scenegraph file format to include kinetic and
kinematic information, a physics-simulation
library, an embedded Scheme interpreter, and a
distributed communication system.

I

Background and motivation
Reliable, robust autonomy is crucial for long
distance and long duration unmanned
exploration of the Martian surface, but autonomy
is difficult to put on mission for a number of
practical reasons. Like a?y engineers, autonomy
developers require a platform on which to test
and-debug their product. For Mars missions this
u generally means one of two unique, identical
rovers: one that flies and one that stays on the
ground, shared by all hardware and software
teams for test and simulation. Autonomy
development and testing generally needs a
complete, operational rover and must wait for all
other teams to complete their work before really
being able to begin theirs. Operating the rover in
a sandbox for autonomy development and testing
is an- expensive, labor-intensive and time-
consuming proposition. Even then, a duplicate
rover in a sandbox is only an approximation of a
rover in Martian gravity, atmosphere and soil.
Compounding the problem is nature of the Mars

launch window. The heavens impose the hardest
of deadlines: a mission can only be launched
dT!l?rir,g 2 short wkdow every 26 ~ o s t k s a d
projects must meet this schedule at all costs. If
there are delays in the project’s critical path the
only alternative is to cut things at the end;
fallback modes in which the rover can operate
without autonomy are always provided for in
case autonomy fails or the schedule slips; these
become the mission baseline.

One part of the solution to this problem
is to enable autonomy development much earlier
in the process, early enough to influence the final
design. The purpose of LiveInventor is to
provide a software environment in which lovers
can be very quickly modeled, and their physical
interaction with the world simulated and
visualized, at a level of abstraction appropriate
for autonomy developers, with accurate masses,
joints, actuators, sensors, terrain, gravity and
atmospheric conditions.

Another part of the solution is to
increase the number of autonomy developers
available to work on the problem. LiveInventor
has been assembled from open-source and COTS
components so that it can be easily and cheaply
distributed to academic institutions, enabling
professors and studens -to easily dev3lop
software for NASA-relevant challenge problems.

Architecture of LiveInventor
LiveInventor is an application that integrates a
physically-based simulation library with a 3-D
rendering environment, a scripting language, and
a distributed communication system, packaged
within a graphical user interface.

LiveInventor was built by extending
OpenInventor, the graphics library developed by
SGI [11. Inventor models three-dimensional
solids using a scenegraph, an ordered acyclic
graph in which nodes represent graphics entities

or operations. Actions (loading a scenegraph
from a file, rendering the scenegraph, searching
it) are accomplished by traversing scenegraphs
and changing state as each node is traversed.
LiveInventor extends the set of nodes defined by
Inventor by introducing nodes that represent
kinematic and kinetic parameters like mass and
inertia tensor, constraints (jointsj between bodies
llke hinges and springs, geometrical collision
models that may differ from the rendered
graphical models, and material types and their
interactions like friction and collision elasticity.
LiveInventor follows Opednventor’s rules for
extending the node and state definitions, so
LiveInventor nodes behave just like regular
OpenInventor nodes, e.g. they are read in with
t& standard read-??om-fi!e command, they are
written with the standard write-to-file command,
etc. Also, the node definitions can be compiled
to a dynamically linked library @LL) so they
can be linked into any existing inventor
application.

When the LiveInventor nodes are
loaded they cause the appropriate dynamic mass
objects, constrakts, collision models a d
materials to be created in the physical simulation
world. The physics library used in LiveInventor
is currently Vortex, sold by Critical Mass Labs.
Autonomy developers‘ can use the embedded
Scheme interpreter to communicate with the
simulated rover or the environment without
having to compile and link C or C+,+ code.
LiveInventor uses the Gambit Scheme library
[2]. Gambit is written in C and includes both a
Scheme interpreter and Scheme-to-C compiler,
making it very easy to call Scheme code from the
C++ environment or call C functions from the
Scheme environment.

Often autonomy developers have
existing systems written in a language other than
Scheme, on operating systems other than
Microsoft Windows NT, and want to develop
and test their code against a simulated rover
without having to either recode in Scheme or
have to link their C/C++ code into a large
executable. Autonomy developers with existing
large systems can use Ensemble, an open-source
publish-subscribe message passing system from
Cornell University to communicate with the
sim4ated rover and its environment [3].
Ensemble is robust, has a small menory
footprint, has been ported to most common
operating systems (Windows, Mac, most UNIX
implementations) and has a simple MI.

’

I - 1 i ~ ~ ~ ~ r 1 Communication

Rove r mode I
I

Extensions to
Openlnve ntor Openlnve ntor

I I 1

Physics I OpenGL 1 I simulation

Figure 1. LiveInventor Architecture

Design Principles
LiveInventor was designed with a number of
principles in mind. The fxst was integrate rather
than reinvent, that, is, wherever possible -use
existing software and file formats rather than
writing our own. Not only does this save time
but it also frees the user from having to learn yet
another proprietary language and/or file format.
LiveInventor’s file format will be quite familiar
to anyone familiar with VRML. The second
principle was to use open source wherever

. possible. All components of LiveInventor are
open source except for the Vortex simulation
engine, and we are looking into developing a
version of LiveInventor that uses an open source
simulation engine like ODE [4]. Using open
source makes redistribution to academic
institutions much simpler. A third principle was
to make it scalable. We wanted it to be easy for
LiveInventor users to throw together a small
mechanical simulation, while still being able to
simulate and render large, complex environments
like the International Space Station. Our fourth
principle was portability through portable
components. All the individual components
comprising OpenInventor run on Linux as well
as Microsoft Windows, so porting it to Linux is
just a matter of recompiling and linking on
Linux.

- - - - - . . . - - -

Current customers and future
directions
LiveInventor is currently being used by the
Personal Satellite Assistant project to simulate
the interaction of the PSA with astronauts inside
the International Space Station. In this scenario
LiveInventor must simulate the PSA in real time
because it is being codrolled by the same

I

software that will ultimately control the
hardware PSA. The PSA controller
communicates with LiveInventor over COMA;
integration of LiveInventor with the CORBA
controller took an afternoon.

LiveInventor is also being used to
develop and test diagnostic code for the K9 rover
arm. Richard Dearden's group at Ames is
developing a system to perform mode and
parameter estimation to improve the robustness
of rover traverses and instrument placement.
They are getting a copy of the K9 robotic arm
and a workspace or 'mini Mars yard' surrounding
the arm. Its purpose is to increase access to a
limited resource (the single arm on K9) and to
enable the insertion of faulty components
without impaciing the main K8 rover. The
team's ability to achieve both of these goals can
be significantly enhanced through a software
simulation of the arm. A simulation can be ready
earlier and enable exploration of a greater range
of parameter values, workspace configurations,
and inserted faults at some cost in fidelity.

Potential directions include large-scale
massively parallel simu!ations to coevolve
hardware and controllers, use by mission

operations to simulate traversals and tasks to
detect potential problems, and integration of
physical simulation and modeling into a rover's
onboard software path-planning software.

Reference
1. The Inventor Mentor by Josie Wernecke,

- Addison-Wesley Publishing Company, New
York: 1994

2. Gambit-C, version 3.0, by Marc Feeley. May
1998
http://www.iro.umontreal.ca/-gambit/doc/gam
bit-c.ps

3. The Ensemble System, Mark Hayden.
Cornel1 University Technical Rzport, TR98-

' 1662, January 1998

4. Open Dynamics Engine v0.035 User Guide
Russell Smith,
http://opende.sourceforge.net/ode-latest-
userguide. htrnl

